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On the analyticity properties of scaling functions in models 
of polymer collapse 

R Brak and A L Owczarekt 
Depattment of Mathemarics, The University of Melbonme. Parkvine, Victoria 3052, Australia 

Received 14 March 1995 

Abstract. We mnsider the mathematical properlies of the generating and partition functions in 
the wo-variable scaling region about the hicritical point in some models of polymer collapse. 
We concentrate on models that have a similar behaviour to that of interacting partially-directed 
self-avoiding walks (LPOSAW) in two dimensions. However, we do not restrict the discussion to 
that model. After describing the properties for a general class of models, and stating exactly 
what we mean by scaling, we prove the following theorem: If the generating function of finite- 
size partitian functiaus has a tricritical c ross~ver  scaling form around the @-point. and thc 
associated hicritical scaling function, 8, has a finite radius of convergence, then the p-artition 
function has a finite-sue scaling form and imponantly the finite-size scaling function, f, is an 
entirefunetion. In the m A w  case we have an explicit representation of the finitesize s c a h g  
function. We point out that given our description of hicritical scaling this theorem should apply 
mutotis mutandis to a wider class of 8-point models. We discuss the result in relation to the 
Edwards model of polymer collapse for which it has recently been argued Ihai the finite-size 
scaling functions ax mt entire. 

1. Introduction 

There exist many exactly solvable examples of two-dimensional lattice models in statistical 
mechanics [I] where an expression for the thermodynamic-limit free energy and values 
for critical exponents at phase transition points can be calculated. However, only a 
few representations of either the thermodynamic (temperature-magnetic field), correlation 
function (temperaturedistance). or finite-size (temperamsystem size) scaling functions 
are known. The scaling functions for the correlation function [2], and the finite-size partition 
function and specific heat [3], of the two-dimensional king model are some examples. 
Recently, the scaling function of the generating function (grand partition function) around 
the hicritical point of the interacting partially-directed self-avoiding walk (IPDSAW) model 
[4] of polymer collapse was calculated#. The generating function is written in terms of the 
variables temperature and monomer (step) fugacity and is the weighted sum of the finite 
length partition functions. Therefore, it is an obvious task to transform this scaling function 
into one for the finite-size partition functions. Another reason to consider this scaling 
function is that some of the finite-size scaling functions of the standard continuum model of 
polymer collapse have recently [6] been argued to be non-analytic at zero argument. While 

t e-mait brak&!a@mundw.mathsaths.mu.oz.au 
$ In this paper the scaling function for the case of the semiconfinuous version of the model is found. If can now 
be demonsmed explicitly, with a straightforward modification of the work in 1.51 thal the fully discrete model has 
the same scaling function. 

0305447w95/174709+17$19.50 @ 1995 IOP Publishing Ltd 4709 
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OUT analysis will be concentrated on the IPDSAW case we shall state our central theorem in a 
general fashion. This is partly because we shall argue later that its conditions should apply 
to the more canonical interacting self-avoiding walk (ISAW) model (at least below the upper 
critical dimension). 

We also write down in this paper (section 4) the set of standard tricritical scaling 
assumptions. These are translations of each of the physical ideas that characterizes a 
hicritical point (in the symmetry plane [7]). This allows us to set up the theorem concerning 
the finitesize scaling function that is proven later. It is possible to understand the finitesize 
theorem in section 5 without reading section 4, except for the conclusion of theorem 4.5. 
Basically, while section 4 is somewhat technical it explains why one can simply substitute 
the tricritical scaling form for the full generating function when near the tricritical point. 

The outline of this paper is as follows. In the next section we define the IPDSAW model 
and follow that with a section on the general description of the scaling in the tricritical 
region. In section 4 we provide a precise description of the expected asymptotic properties 
of the generating function around the hicritical point. In section 5 we prove a fairly general 
theorem relating the analytic properties of the tricritical scaling function, to the finite-size 
scaling function, f .  In section 6 we :pply the theorem to the IPDSAW model and derive 
series and integral representations for f. We end with a discussion of the relevance of these 
results to the polymer collapse transition in general. 

2. The IPDSAW model 

The IPDSAW model is a model exhibiting a collapse transition [8,4]. It consists of a partially- 
directed walk with nearest-neighbour interactions. A partiallydirected walk on the square 
lattice i s  a self-avoiding walk attached to the origin in which 'westerly' directed steps are 
forbidden. The partition function for an n step walk is 

2 " ( W )  = Wm(y") (1) 
QmG4- 

where o is the Boltzmann weight exp(p'J), J the energy of a single nearest-neighbour 
interaction, /3 the inverse temperature, Qn is the set of n-step partially-directed walks and 
m(rp.) is the number of nearest-neighbour interactions in a given configuration rp,. In the 
thermodynamic limit, n --t 00, the model undergoes a phase transition from an extended 
phase For o < oE to a collapsed phase for o > 0,. The free energy per step, given by 

1 
n - m  np' 

F(o) = lim -- log(Z,(o)) 

has a singularity at o =U,. If the generating function 
m 

G(o, U) = x Z n ( ~ ) u n  
"4 

(3) 

considered as a function of U has a radius of convergence uc(o), then it can be shown that 

Mathematically it hum out to be more convenient to introduce the reduced partition 
function, Q,, and study an alternative generating function 
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This essentially allows the simple transformation to scaling variables in the IPDSAW model. 
(In more general models, such as ISAw, this transformation should still be analytic if more 
complicated--the U-” becomes some analytic function j~;”(o).) A solution for &7 expressed 
in terms of q-Bessel functions has been found [SI (and in terms of Bessel functions for the 
semicontinuous case [4]), from which an extensive study of the thermodynamic properties 
has been made [9,4]. 

3. General scaling: a brief survey 

Of relevance is the radius of convergence, q&), of g considered as a function of q, with 
w a parameter, which is shown schematically in figure 1. We shall refer to the line q&) as 
the ‘critical line’. The most significant feature of figure 1 is the point (oc. 1) around which 
the generating function behaves mathematically in a tricritical fashion [IO]. 

61 - Temperature variable 
z 

Figure 1. The radius of convergence, pc(o), of 8(q. 0) in the PDSAW model, showing the 
tricriticd point at (ac, 1). For other models the right-hand side of the c w e  need not run along 
q = 1. The m w s  indicate the paths on which the various exponents are defined. 

Before we use the asymptotic symbol ‘-’ please note that by the expression ‘g (x)  - 
f ( x )  as x + x,’ we will always mean that limx+k g/f = 1. This is equivalent to 
g = f + o(f) as x + x,. Also, the expression g(x ,  y )  - f ( x ,  y )  as x + x, for 
fixed z = z(x, y )  is equivalent to g ( x ,  y ( x ,  z ) )  - f ( x ,  y ( x ,  z ) )  considered as functions 
of n, and as x + x,, with the parameter z fixed. This last definition depends on the 
invertibility of z ( x ,  y ) .  Geometrically, this corresponds to approaching x, along a level 
curve z(x ,  y) = constant. 

In the neighbourhood of tricritical point one expects 1101 the generating function to 
have the scaling form 

(6) 
as q t 1 with the argument of 2 fixed at some value. It is however usual, in some vague 
sense, to ssume that the right-hand side gives a good representation of the left-hand side for 
q close to 1 and o close to U,: this region is sketched in figure 2. (Sometimes ‘=’ or ‘e’ are 
used or the idea of uniformity is mentioned: none of these is correct, as usually quoted-in 
fact non-uniformity and non-equality are required to give the various asymptotic regions 
correctly.) It is this ‘scaling’ sense we shall explicitly state below in section 4. In fact, we 

G - Gs(o,q) E At(1 -q)-’i?(AS(l-  ~I-’(wc - 01) 
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propose to introduce a new symbol ‘0’ to cover the assumptions discussed in section 4 as 
we believe they can be modified to cover some of the many two-variable cross-over scaling 
behaviours seen in various model and real systems. 
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Figure 2. The region where the traditional scaling form is a good asymptotic representation of 
the generating function (a) and partition function (b).  The shaded region in (a) is constructed by 
considering each level m e  A d -  q)*(ar, - o) = constant. lf the constant is XI then there is 
a point P such (hat for all values ofq closer to 1 the ratio ofthe generating function to its scaling 
form is closer to 1 than some preset emr.  The c w e  given by A,(1 - q ) - o ( e  -0) = x+ is the 
place where the scaling form, A, diverges-note that it does not coincide with the critical line 
(where the generating function diverpes). The shaded region in (b) is constructed in a similar 
way by considering when the ratio of the partition function to the scaling form becomes close 
to I on level curves L e “+(e -0 )  =constant. 

The tricritical scaling function i behaves like 

G+(x+ - x)-” as x t X+ > 0 
a s x - t o  

a x $ - 0 0  
(7) 

where yr, y+ and q4 are universal exponents, and At, As, G+ and x+ are non-universal 
constants. In the iPDSAW case &r) has a power-law essential singularity as x 4 --in 
other models there may be a singularity at some finite negative value x- .  Note that the 
natural scaling variable is one that is linear in the temperature difference to the tricritical 
point; in field theoretic discussions the mass gap or inverse correlation length often takes 
that role and a scaling function Written in that variable will usually be manifestly non- 
analytic at the origin (for example see [I l l ) .  The scaling function i ( x )  is universal up to 
a multiplicative constant in the argument and an overall multiplicative constant. 

In addition one expects [lo] the partition function to have a finite-size scaling form 

Q.(o) - Atnn-’f(n*(oc - o)) (8) 

as n -+ 03 with the argument of f fixed at some value. The function j ( z )  is the finite-size 
scaling function and is universal up to a multiplicative constant in the argument and an 
overall factor (we have not shown these explicitly). The finitesize scaling function f ( z )  is 
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where U is the surface free energy exponentt and Fj ,  p+ and ps are non-universal constants. 

4. Asymptotic behaviour of the scaling functions 

The principal result of the next section is to prove that the finite-size scaling function is 
entire. To do this we will need two results: first an asymptotic form of G that is uniform 
throughout some fixed interval containing 0, and second, the asymptotic form must have 
the same radius of convergence, q&) as the generating function itself (this is so we 
can apply Darboux's theorem throughout the fixed interval). Unfortunately, the traditional 
tricritical scaling form (6) fails both requirements. However, as shown in this section it 
can be expanded by use of two 'extending' functions. The purpose of one of the extending 
functions is to ensure the extended tricritical form has singularities at the desired places, 
whilst the second ensures the correct behaviour on the critical line. These allow a uniform 
asymptotic expansion to be constructed. 

4.1. Tricritical scaling 

In the following definition we describe mathematically our understanding of a tricritical 
point and the traditional scaling that is expected to hold (for an asymmetric model [IO] 
such as the IPDSAW). Note, all the limits are taken through real values and any constants 
used are assumed to be non-zero. Also, all functions of w and/or q are real valued for real 
values of their arguments. The partition function Q,(w) and O(o, q) are positive valued 
for all physical values of their arguments. 

Defrnilion 4.1 (tricrifical scaling). Let G(w, q )  generate the functions Q.(w), 
m 

G ( w  q )  = Qn(w)q". (10) 
n=1 

Let I+ be the open interval (00, wc), I -  be the open interval (e&, w , )  and I = I+U(w,)U I - ,  
for some 00, 01 for which 0 c c w, < 01. Consider g(w, q) a function of q with w 
a real, positive valued parameter. If the following conditions hold tricritical scaling is said 
to occur at (wc, 1): 

(i) B(w, q )  has a radius of convergence, qc(w) z 0, with 

q,(o) = 1 for w E I -  U Ioc) (11) 
q,(w) c 1 and analytic for w E I+ (12) 

and q&) monotonically increasing for w E I+;  
(ii) for D, @ E R+, 

1 - q&) - D(wc - w)'/4+ as w t w, 

t Note. the I + -CO behaviour may be slightly different depending on whether the model is 'Symmetric' or not 
[IO]. 
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(iv) for A,, yI E R+, 

B(o* 9) q)-’ as t qc(w) ,  0 = o c  (15) 

(v) for A- (0) an analytic function of o for o E I - ,  and for fixed o, 

W, q)  - A-(w)  

A-(@) - S-(W - w~)-’” 

as q t 1 ,  o E I- 
(vi) for S+, S- E !R+ and yu = yt/@ the amplitudes 

a s o J o c  
A+(@) - S+(o, - O ) Y + ’ ~ - ~ ~  

(vii) for all fixed x E (-m.x+), with x+ z 0, 

where A, = x+D#; 
(viii) and the ‘tricritical scaling function’ j ( x )  is an analytic function for x E (--00, x+)  

with the radius of convergence R of i equal to x+ and a singularity on its radius of 
convergence at x = x+, and behaves as 

and i ( 0 )  = 1 ,  G+ = S+Dn-y+(x+@)y+/A,, G-  = S-D”x=/A,.  
We note that the asymptotic relation (19) can be rephrased into the implicit form: for 

fixed x = A,(1 - q)-@(o, - o) 
q)  A(@, 4) E At(1 - q)-”&As(1-  q)-’(Wc - 0)) as 4 t 1 .  (2) 

We make three further points about this definition: one is that neither expression (14) nor 
(16) are uniform in the variable W .  They must, in fact, be manifestly non-uniform to cross- 
over into the form (15) at o = 0,. Secondly and similarly, the asymptotic expression (19) 
is not uniform in the parameter x .  Finally, this definition concerns models like the IPDSAW 
which have an asymmetric tricritical transition [ lo];  it can be easily modified for the 
symmetric case. It can also be modified if say yI < 0 with some work. 

4.2. Extended tricritical scalingfunctwn 

Lemma 4.2. Let the function E(w, q)  have a tricritical scaling behaviour as stated in the 
definition 4.1, then there exist real valued functions d(o)  and h(o) such that B(o, q )  - &, 
as q t q&) for all fixed o E I where 

B&,q) = Atd(o)(l - q P i ( A t ( l  -q)*h(w)). (23) 
The ‘extending’ functions d and h are analytic for all o G I except possibly at w = o,, 
continuous for all w E I ,  and 

d ( o )  - 1 aso-+o, (W 
h(o)-oC-o as w -+ a,. (25) 

The proof of the theorem is straightforward as it is possible to give explicit expressions 
for h and d.  Using these expressions and the properties of i essentially give the required 
result. 
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Proof. Let 

then h is analytic f o r o  E I + ,  I-  since qc(o) is analytic for w E I+, I - .  Using (13) shows 
h - o, - o as o, 

The principal function of h is to ensure that the argument of i reaches x+ on the critical 
line. As q tends to qc(w) the argument of i increases until it reaches the singularity at 
x + .  Unless the argument of i is given by A,(1 - q)+h(o) (this being the equation of the 
critical line of B) the scaling function will reach its singularity at a different point in the 
oq-plane to that of 8. Hence, by introducing h as in (23) the argument of i is controlled 
to ensure that the value X+ is reached on the critical line whatever its shape, as is readily 
verified by direct substitution. Note that h(o) is invertible in both I+ and I- since q&) 
is monotonic. 

w and hence h is continuous in I .  

Let 
(x+q5)y+A;'G;'(l -qc(o))"-"+A+(o) o E I+ 

d(w)=  1 w = oc (27) 

then, in a manner similar to the h argument, using (13), (17) and (18) shows that d has the 
required behaviour (24). 

The purpose of d is to ensure the correct amplitudes A+(@) and A-(@) are obtained. 
Substituting (26) and (27) into (23) and forfrred o E I and q sufficiently close to the 
critical line enables us to use (20) and (21), which gives the right-hand sides of (14), (15) 
and (16) directly. Since, by definition 4.1, B is also asymptotic to the right-hand sides of 
(14), (15) and (16) we have that B - Gu as q .f qc(o) f o r o  E I and fixed. Note that d(o) 
and h(w) in I -  are not unique as we are free to choose any monotonic function h(o) that 
has the property (25) after which d(o) is then determined. 0 

The above theorem gives us a single function, A, representing the asymptotic behaviour 
of G as the critical line is approached from below for fued o. However, this does not 
completely specify the asymptotic behaviour of G. For example, what happens if the 
tricritical point is approached along some curve in the oq-plane rather than from directly 
below? In fact, G - Gu for fixed y = A,(I - q)-)h(o) as q t I .  This is a simple 
consequence of the above definition and lemma. 

Corollary 4.3. Let the function B(o, q )  have the tricritical scaling behaviour as stated in 
the definition 4.1, and that the functions h(o )  and d(o) are those defined in lemma 4.2 and 
its proof. Let h- ' ( t )  be the inverse function of h, then 

where 

1 A f A ; ' G I ' ( U  - ~ , ) " A - ( o )  0 E I- 

B ( W ) , q )  AB(G(q))(l -s)-"~(Y) as 4 t 1 (28) 

4 q )  = h-") (29) 
with 

for all fixed y E (-CO, x+).  

(24) and (25) and the condition (19), and is unenlightening. 
We omit the proof of this result as it is a straightforward application of the properties 
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4.3. Uniform asymptotics 

We wish to find a uniform asymptotic form for the generating function valid throughout 
the interval I as the critical l i e  is approached along any curve. To establish this will 
require the introduction of one further assumption. It is based on the notion of ‘asymptotic 
completeness’. We introduce this notion to describe the general, hut somewhat vague, belief 
that around a tricritical point the asymptotic behaviour of G is fully represented by a fixed 
set of critical exponent?, and hence a corresponding set of functions. 

In the following theorem we show that (23) is uniformly valid for all w E I .  This 
is based on the results of lemma 4.2 (that G. gives the correct asymptotic behaviour for 
each fixed w E I), on the corollary 4.3 (that it also gives the correct asymptotic behaviour 
for each fixed y c (-w,x+) as q t 1 with y = A,(1 - q)*h(w)), and on the added 
assumption of ‘asymptotic completeness’. 

Asymptotic completeness is required for a particular technical reason. The asymptotic 
behaviour of lemma 4.2 and traditional scaling give rise to several domains in which the 
various asymptotic statements are valid. For Gu to hold uniformly it is necessary that 
these domains overlap. Without asymptotic completeness it is in general possible for thin 
‘wedges’ to separate these various domains. It is then in principle possible for G to have 
an additional asymptotic form, and hence critical exponents, along a curve that lies within 
a wedge. Since it is generdly believed that around a tricritid point no such ‘additional’ 
behaviour occurs we make it a condition that it does not. For any given model it may 
be possible to show that these wedges do not exist (i.e. the domains overlap) and so the 
invocation of asymptotic completeness would be unnecessary. However, as the theorems 
do not refer to any particular model we need to make this assumption. 

R Brak and A L Owczarek 

The discussion is simplified if we first introduce the following definition. 

Definition 4.4 (&-asymptotic region). If u ( x )  - p(x) as x t x g  then the &-asymptotic 
region Au(&) is defined as the interval below Q for which ] u ( x ) / p ( x )  - 1) < E. This 
interval is given as x g  > x > xo - 6;(&). If the functions depend on another parameter, 
w say, the region is an area in the ox-plane and the value &;(E, w )  depends generically on 
that parameter. 

p .  

The assumption of asymptotic completeness translates technically to the assumption 
that close to the hicritical point the e-asymptotic region where the generating function is 
asymptotic to its (fixed) highnow temperature behaviour becomes small (as w -+ we) no 
faster than one of the level curves y = A,(] - q)-mh(w) =constant. Basically this patches 
the highnow temperature asymptotic forms with the tricritical one. By construction 8, gives 
both these forms and so can be shown to be uniform. 

Theorem 4.5 (Tricritical uniformfry). Let G(w, q )  be a generating function satisfying the 
conditions stated in definition 4.1, lemma 4.2 and corollary 4.3. Foro E I+(resp. w f I-) 
and fixed, denote the E-asymptotic region for which G - A+(q,(w) - q)-Y+(resp. G - 
A&)) by A$(&)(resp. A;(&)) and the &-asymptotic region for which - A+(q,(w) - 
q)-y+(resp. G, - A-(w)) by A$J&)(resp. A&(&)). 

(i) If for all w E 1, there exists y(&) B (0, x+) such that 

and 
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(ii) if for all o E I- there exists j+) E (-CO, 0) such that 

4717 

then 

B Ad(@)(l - q)-ni2(As(1 - q)-'h(@)) t qc(m) (33) 

uniformly for dl o E I .  
As mentioned above the proof is based on showing that the &-asymptotic regions arising 

from the various asymptotic statements overlap in such a way as to give rise to a common 
region adjacent to the critical line. Most of these regions are illustrated schematically in 
figures 3 and 4 which we shall refer to throughout the following proof. We shall use 
Aq = 1 - q and Am =we - o. The function y(w, q) = A,(1 - q)-'h(m). 

Figure 3. A schematic illushation of the various e-asymptotic boundxier. The lines labelled by 
values of y are level curves of y = A,(l -q)+h(w). In this case we have chosen j < yt-it 
could of Muse be the case that y > yz. However, whatever the ose. the maximum of 9 and 
y2 is less than X I  (thaf is, the critical line). The yz value is chosen so that it is above the y~ 
line and the a,, l i e .  
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1 3  

Fi re 4 A schemvic illusvation of the region that is mnrained in the e-asymptotic region 
A! The wings are the ~~gions bounded by the y, line (and its m 2 wc connteqm), while the 
middle is the scaling region defined by the lwus of values 8: (y) which are strictly positive 
for y E [O. ~ 1 .  The intersection of these two regions defines the point P (and for o 2 the 
point PI). T h y  points are below the mtical line by consuuction and so allow us to choose the 
uniform value S?. The region defined by the 3: curve and the critical line is then celtainly 
mntained in A?. 

Thus, if we choose E' = (E - O(q,(w) - q)) / ( I  + O(q,(w) - q)) and q sufficiently close 
to 4&). say 4dw) - q = S,,, so that E' =- 0. then CA - A+(qdw) - q)-y+ as q t 4&) 
with an &-asymptotic region given by the intersection of q E (qc(w) - &+, qc(w)) and 
x+ - y(w,q )  < S!+(&'j, for each o E f+. Given that I+ is a fixed interval in o it is easy 
to see (figure 3) &at one can now choose some y~ E ( y ~ , x + )  such that the region lying 
between y(w. 4 )  = yz and the critical c w e  is certainly contained in A;"(&). 

From (31) we have that the &-asymptotic region for G - A+(q,(w) - q)-Y+ is at least 
the region defined by the critical c w e  and the curve y(w. q)  = y, w E I+. One can now 
simply choose (see figure 3) the maximum of y2 and y, say y3,  so that the region defined 
by the area between the critical curve and the. curve y(w. q)  = y3 is certainly contained in 
the A$(3&) &-asymptotic region. 

Now, the &-asymptotic region A$ ( E )  is also defined by considering the asymptotics 
at fixed y. From corollary 4.3, for each fixed y E [O, xi) there exists a 82(&, y) such 
that JG/G,, - 11 c E for 11 - ql < 8$(&,y).  The value @ ( & , y )  is non-zero for a11 
y E (0, x+)  by definition. The worst that can happen is that it tends to zero as y t x+ 
(see figure 4). It is however strictly positive for y E [O, y3l. By considering figure 4 it is 
clear that the two different regions described above, both of which are contained within the 
&-asymptotic region A$(&), share a common neighbourhood. It is then clear that one can 
choose some @ ( E )  independent of w such that the region defined by Iq&) - q1 < it(&) 
is wholly contained in the A ~ ( E )  region for I+ .  of there is another line y4 = y ( q  q), with 
y4 E [0, y 1, whose E region begins closer to the critical line one simply chooses that point 

in w E f+. 
to give 8, -2 (E ) . )  Hence the asymptotic relation G(w, q)  - G&, q )  as q t q&) is uniform 

These arguments apply mutatis mutandis for w E I-. 0 
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We can now summarize all the scaling behaviour described above in definition 4.1, 

(38) 

as 'G(o,q)  scales as At(l - q)-ni(AS{l  - q)-"(o, -0))' which means that extending 
functions can be found to make a uniform asymptotic expansion; that is, asymptotic 
completeness is assumed. 

lemma 4.2, corollary 4.3 and theorem 4.5 by introducing the symbol 'e'. We then read 

G h  q)*Ad1 - q)-n2(As{1- q)-'{Oc - 4) 

5. Analyticity of the finite-size scaling function 

In the theorem proven below we show that the finite-size scaling function of the partition 
function exists and moreover is entire given that the hicritical scaling function of the 
generating function exists and has a finite radius of convergence. To complete the list 
of sufficient conditions that we have compiled we add the singularity structure of E and 
E,, in the complex q plane. This condition is one of the usual Darboux conditions which 
would normally hold so that it was possible to find the behaviour of the coefficients of a 
power series from an asymptotic representation. It is possible that this condition could be 
weakened without changing the consequences. 

Theorem 5.1. Let g(o, q) be a generating function satisfying the conditions stated in 
definition 4.1 and theorem 4.5. Let & be the uniform asymptotic behaviour of B in the 
interval o E I. Let g('") and GL'") be the mth derivatives. If on the circle 141 = q&) in the 
complex q-plane, Gem) - E:'") has a finite number of singularities and ai each singularity qj 
say, 

p) - C p  = O({q. I - q)al-') q -2 qj (39) 

for some m > I, where uj is some assignable positive constant, then 

where C encircles the origin and contains no singularities of Gu. 
Furthermore, the finite-size scaling function 

for any z E R, exists, and is given by 

where $"(O) is the mth derivative of hicritical scaling function Z ( x )  at x = 0. Finally, 
the function f̂  is entire. 

An outline of the proof is as follows. There are essentially three parts of the proof. The 
first part invokes Darboux's theorem to prove (40). After a rearrangement of the contour 
integral and the use of the definition of the finite-size scaling function, the second part relies 
on interchanging a sum and an integral, whilst the third part relies on interchanging a limit 
and a sum. For each of the latter two parts we need to prove a uniformity condition. These 
allow us to then use two theorems which are given in the appendix (see (A.2) and (A.3)). 
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Proof. To prove (40) we need to satisfy the conditions of Darboux's theorem (given 
in the appendix (A.l) for convenience). First, Gu and G are analytic in the annulus 
0 -= 141 c q&). G is analytic because qc(w) is the radius of convergence of G and Gu is 
analytic because the uniforming function h(o),  as given in theorem 4.2, was constructed 
to ensure the radius of convergence of GU coincided with q&) for o E I .  The remaining 
condition is satisfied by assumption (i.e. equation (39)). 
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Let 1 - q = t / n ,  then equation (40) gives 

(43) 

(44) 

as n + 03, where C, is a contour encircling the integer n, and hence 

Q,,-i(o) = Atd(o)(n - l)'-iZn(z) + o(q,(o)-"n-") 
where 

By noting q& - zn-+)-" A+ constant as n + 00 it is not too difficult to see that the 
finite-size scaling function, f(z), is given by 

Now, we have assumed that the tricritical scaling function, i ( x ) .  has a radius of convergence 
R = x+, where 0 R < 03, and so the Taylor series 

g i p  (47) 
m=O 

converges for 1x1 < R. Here ii = i'"'(O)/m!. Substituting into (45) gives 

The sum and the integral can only be interchanged if the sum is uniformly convergent with 
respect to t ,  and the function t-m# is continuous on the path of integration. The latter is 
true as the contour does not pass through or around the origin. We now prove the former 
condition using the Weierstrass M-test. 

We need to show that the sum is uniformly convergent in a compact domain containing 
the contour: that is, parameaizing the contour by t = n + &exp(iO), we need to show 
uniform convergence in the domain It - nI < E .  Now, choosing a number r such that 
0 < E c r c n we have 

in this domain. Hence, the sum in (48) is bounded by the sum E"_,, Iii,(A,z(rt - r)-@]'"( 
which, by assumption, converges for IzI < IR(n - r ) ' /Al l .  As this bounding series is 
independent o f t ,  by the Weierstrass M-test the sum in (48) is uniformly convergent so long 
as JzJ < JR(n - r )Q /A ,J .  Thus the sum and the integral may be interchanged giving 
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The integral can now be evaluated explicitly by a residue calculation, giving 

We need to evaluate 

rim L ( Z )  (52) 
z x i  

which can be done if we can interchange the limit and the sum. To do this interchange 
we first note that using the 'root test' one can show that for any IzI < IR(n - r)+/AJ the 
right-hand side of (51) is absolutely convergent. One can also show using the Weierstrass 
M-test that the series is convergent uniform in n > N for IzI < IR(N - r)+/AJ. It can 
also be shown that 

a s n + c o  (53) 
,I-m+n r ( n - 1 + m @ + y , )  --f 

u n )  
and that the sum 

converges for any value z (see below). Hence for any value of IzI e IR(N - r ) Q / A s l  we 
can now use the theorem (A.3) of the appendix: a sequence of uniformly convergent series 
will converge to a sum of limiting terms given that the limit series is also convergent. Note 
that as the bound on e can be made arbitrarily large we have shown that we can accomplish 
the interchange for any z. 

Thus we can indeed interchange the limit and the sum in (52). and hence 

Evaluating the limit gives 

Finally, considering I ~ ; ( A , Z ) ~ /  r(mq4 + yt)l =: xFdumzm as a power series 
in z then the radius of convergence, R. is given by 1/R, = lim supm3maA'm. We now 
show that this limit is zero and hence Ra is infinite. Since any convergent power series 
also converges absolutely and i(x) = CL,, i :xm is assumed to converge with radius of 
convergence R, we have that 

Thus 

= O  (58) 
and hence Rd = 03. Since the right-hand side of (56) has an infinite radius of convergence 
it is an entire function. 0 
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6. Finite-sue scaling and the m A w  

For the (semi-continuous) IPDSAW model it has been shown [4] that the generating function 
is indeed of the form (6), with 
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remembering that m =e$', and the tricritical scaling Funcfion 21 is given by 
Ai(-x) 

& ( x )  = -- 
A i ' ( - X )  

where Ai(.) is the Airy function. The only differences in the fully discrete case are the 
non-universal constants AI and A,. Given that the semicontinuous model has been studied 
more extensively we use it for convenience (the corresponding theorem is a straightforward 
modification and gives the same result). 

As the A i  function and its derivative are entire functions and non-zero in a 
neighbourhood of the origin, it implies that 21 has a finite radius R = where 
a0 = 1.018 19.. . is the closest zero to the origin of Ai'(-x). Thus by the above theorem, 
f; must be an entire function, given by 

We shall now deduce the asymptotic behaviour off;  in the two cases z -+ iw. First 
however, we see that for z = 0 it is simple to find f~(0)  = FO = 3-'/3/ r(2/3). 

For z << 0 it is not useful to work directly with (61) but we can deduce the z + -cm 
behaviour from the results already obtained in [ 121 where it has been shown that, for fixed 

> U,, 

~"(0) - ~ 1 0 "  e x p ( - ~ z n ' / ~ ) n - ~ / ~  n + w , m  > o, (62) 
where HI = ( 2 , 9 J h / ~ r ' p ~ ) ' / ~ ,  HZ = -, h = log((1 + p ) / m )  - p with 
p = ,fw. For small Am we can rearrange the right-hand side of (62) into the 
form 

where 

Comparing (63) with (8) implies 

(65) -]/a iZp/4 

with .us = exp[K~(4BJm:)-'/~] and F- = (4BcJmf) ' /24fK~/A, ) .  
For z >> 0 we use the integral representation (valid for all z) 

fi(z) - F-lzl .us 

where C is a Hankel contour from --CO around all the. singularities and back in the upper 
half plane to -ca. This is obtained by using the integral representation of the inverse 
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of the gamma function. The large positive z behaviour can now be related to that of the 
Mittag-Lemer function 

E&) = - - dt - 3 exp(u3l2) 2ni s c t*/3 - U  
(67) 

(see [13]) by considering the poles of &(n). The constants F+ = 3As/2a; and p+ = 
exp[(A./~,#/~]. This agrees with the work of Louchard [14,15] where a similar problem 
arises in the problem of Brownian excursion area. 

Putting these results together gives 

F+W? asZ’00 
P - 3-Il3/ r (2 /3)  a s z + O  

ita 1 ~ 3 1 4  as z + -CQ i F-lzl- l~~ 

which agees with (9). 

7. Conclusions 

We have shown that in the case of the IPDSAW model in two dimensions that the finitesize 
scaling function is entire. Furthermore we have explicit representations of that function in 
terms of a Taylor series and a contour integral. To apply the above theorem to other models 
we need to remember that the scaled partition function Q.(w) was obtained from the original 
partition function 2.(0) by changing variables in the associated generating functions so that 
one scaling axis lies along the line q = 1 (with q conjugate to n for Q”). Depending on 
the value of the cross-over exponent @ this should be a polynomial transformation and it 
gives rise to the function pa@) mentioned in section 2. This allows us to move onto 
the question of when the conditions of the theorem should bold. We would expect that 
so long as the thermodynamic transition is dominated by fluctuations, so that hyperscaling 
holes and there is ‘only one (thermal) length scale’ (see for example [16-18] and references 
therein), such as is understood to occur below the upper critical dimension (d < 3 in this 
case), then the tricritical scaling form for the generating function should exist, and hence 
our theorem holds. We note that the upper critical dimension d = 3 is a special case and 
strictly speaking scaling breaks down [191 (due to the presence of logarithmic corrections) 
at tricritical points-this also seems to be the case in De Gennes threedimensional @-point 
description [20]. 

Another way to look at the scaling hypothesis is through the Yang-Lee mechanism for 
phase transition. The approach of the zeros of the partition function to the real temperature 
axis (also known as Fisher zeros) should be described by scaling [21,22] in this case, 
through the cross-over exponent. That means the position of the closest zeros to the critical 
point should scale as 

U,, - w, - Cn-4 (69) 
(cf equation (2.17) in 1211 and equation (2.11) of 1221 noting that l/$ = 2 - U). This 
implies that in the limit of large n the zeros of the associated scaling function stay a fixed 
distance from the real axis. This also implies that the singularities of the freeenergy scaling 
function stay a fixed distance away from the real axis. Hence, one way to test scaling (and 
hence the analyticity of the scaling function) is to consider the approach of the complex- 
temperatureplane partition-function zeros at the critical point. We also mention that Glasser 
et a1 [22] have calculated some finite-size scaling functions at the multicritical points of 
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infiniterange spin models (here the size is the volume, rather than the length of walk) and 
furthermore that these are entire. Implicitly we assume that the free energy exists for all 
temperatures around the tricritical point. We note that this may not be that case for the 
Domb-Joyce model [23] with attractive interactions?. 

The results of our theorem can be compared to the predjctjon 16) that, for the (two- 
parameter) Edwards model in dimension d > 2, and also for the scaling theory for the 
collapse transition (argued by Sokal [6] to be given by the (two-parameter) Edwards model 
[6], at least for repulsive interactions, in 3 c d c 4). there are singularities in the finite-size 
scaling functions of various quantities on the real axis. Given that the (two-parameter) 
Edwards model is not a model of collapse for d < 3, where we argue om theorems should 
hold, there is no immediate contradiction in these dimensions. 

We point out that our theorem holds not only for the partition functions of  the lPDSAW 
model but also for the horizontal end-toad displacement (see equation (3.46) of 141) in 
that model. We conclude by finding that the analyticity properties of scaling functions for 
polymer collapse in general dimensions is an interesting open question. 
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Appendix A. Auxiliary theorems 

We state Darboux's theorem as given in OIver [24]. 

Theorem A.1 (Darbow 1878). Let u(t) be a given analytic function and 

o(t) = antn (70) 
m 

"-00 

its Laurent expansion in an annulus 0 < It1 < r .  Let c( t )  be a function with the following 
properties: 

(i) ~ ( t )  is analytic in 0 < It1 c r .  
(ii) On the circle It1 = r ,  the difference of the mth derivatives (m 2 0), w("')(t) -c@+)(t) 

has a finite number of singularities and at each singularity t j .  say, 
w'"(t) - c ( m ) ( t )  = O((t - t j ) q  t -+ t j  (71) 

where uj is an assignable positive constant. 
(iii) The coefficients b, in the Laurent expansion 

m 

c(t) = bntn 0 c (tl < r 
"=-cc 

have known asymptotic behaviour, then 

a,, = b,, i- o(r-"n-) n + W .  (73) 
t The Domb-Joyce model with attractive interactions is chancterized by a 'dot' or 'trapped' phase where the 
average extent of the associated walks are bounded in space, so that v = 0 (Ibis phase is somewhat misleadingly 
called collapsed in lhe literature: collapse is used for ISAW and real polymers at low tempera" where v = lid). 
Hence, the Domb-Joyce model with attractive interactions describes the transition from a random walk to a trapped 
phase-this clearly has no1I"ng to do with polymer physics in any finite dimension. 
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Theorem A.2 (Interchanging an infegrul and a sum). Let 

be an infinite series. If the terms of (74) are continuous functions of z in some compact 
domain, 2) of the complex plane, and the series converges uniformly in I) then 

The proof may be found in any standard textbook (e.g. [Z]). 

Theorem A.3 (Interchanging a limit and a sum). Let S,, = Cbaf )  be a convergent 
series, convergent uniformly in n, and n an integer, such that limn+m a:' = a? exists, and 
5, = E,", limn+- a?) = xs ap is a convergent series. Then it can be shown 

lim S, = 5,. (76) 

The proof is a straightforward extension of the theorem on continuity of uniformly 
convergent series in some parameter which can also be found in standard textbooks. 

n-m 
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